Better patient care with new online tool launched by FDA

The Food and Drug Administration (FDA) is the regulatory body for pharmaceutical and healthcare industry in the USA. The FDA has developed a new strategy to get real-time information and updates pertaining to the manufacture, sale, and approval of novel antibiotics and anti-fungal medications. This information shall be available to all healthcare providers (doctors, nurses, and pharmacists). The main objective of FDA is to combat the growing menace of antimicrobial resistance.

The regulatory authority FDA has created a special website that provides real-time information about how a special drug can be used to combat specific bacterial or fungal infections. This information is necessary to tackle the growing menace of medical negligence and non-optimized medications; the implications of these limitations have burdened the current healthcare system by more than billion dollars annually. The proliferation of resistant bacteria can be effectively tackled by healthcare professionals with this real-time information, thereby providing better patient outcomes.

One of the biggest problems of modern medications is the growing resistance to antibiotics. While concerted efforts are being made to develop new therapeutic drugs for various ailments, the use of antibiotics cannot be halted at this stage; however, medical doctors now prescribe limited doses of antibiotics to livestock as the problem of antimicrobial resistance is more severe in these subjects. The FDA has also implemented new guidelines on antibiotic use to improve patience care.

In a candid interview with Scott Gottlieb, M.D (erstwhile FDA Commissioner), we received the following feedback: most doctors have to tackle patients with critical ailments. To cure such patients, the doctor has to exactly identify the pathogen that is causing critical ailment in the patient. Moreover, the doctor has to assess comprehensively how defiant is the pathogen to various treatments.

A general diagnosis means that a doctor may prescribe a medication that is combated and resisted strongly by the bacterial or fungal pathogen. Such a situation does not do any good to improve the patients’ condition, and we cannot ignore the broader consequences of such situations as they can metamorphose into public health problems.

Under conventional treatment modality, the individual’s drug labeling had to be combined with the results of susceptibility testing; the process was quite lengthy and took a battery of tests for identification and confirmation.

A more centralized approach to tackle this issue of poor diagnosis and prognosis, FDA authorities have come up with a more centralized approach. The process had improved tremendously with this new tool; the efficiency of accurate diagnosis and prognosis has increased remarkably as healthcare providers are abreast with real-time information about latest drugs and medications.

In order to identify an antibacterial or antifungal drug that is most effective to treat infection in a patient, the FDA authorities have compulsorily asked physicians to perform antimicrobial susceptibility test (AST). The results of AST tests must be considered before prescribing any drug.

The criteria for these tests are as follows: “breakpoints” or “susceptibility test interpretive criteria. With these criteria, a physician has to evaluate the susceptibility of antibacterial/antifungal drugs to specific bacteria or fungi. The number of bacteria and fungi changes in the patients’ body over a period. With this changing trend, their susceptibility also decreases with respect to certain drugs. Breakpoints should be updated to take into account these occurrences.

The erstwhile conventional approach was as follows: the new breakpoint information was provided by the manufacturer of each drug in the drug label; each of these drug labels was reviewed and introduced into the market only after receiving approval from FDA. This process had to be accurately on a case-by-case basis. After receiving approval for revised drug labeling, the AST results also had to be updated and incorporated in the drug labeling. Owing to this process, there was an unnecessary delay in disseminating information to healthcare providers. In each case, the drug and device labeling had to be changed whenever there was a sharp change in breakpoints.

Because the US Congress updated the 21st Century Cure Act, the FDA could come up with this new approach: the breakpoints can now be updated for multiple drugs with same active ingredient; moreover, the information could be shared vividly through a dedicated website designed by the FDA. Thus, healthcare providers can now access all the FDA-recognized breakpoints on the online channel. Although the breakpoints are determined by the Standard-Development Organization, the FDA is the final regulatory authority that reviews and leverages their work. The FDA agrees as to whether they are appropriate for commercial use. Based on the review provided by the FDA, the standard can be accepted partially or completely. Furthermore, alternative breakthroughs can be established with the review of FDA. If companies disagree strongly with any of the recognized standards, they have full authority to supply data that can authenticate alternative breakpoints.

The breakpoint information is presented on the webpage of FDA. All drug manufacturers now have to update each drug labeling with respect to the breaking information updates. As the process has shifted, it has become automated and the previous time-consuming process of continuous updates has been overthrown. In other words, the process of drug and device labeling has become more efficient and less time-consuming. Thus, the responsibility of drug manufacturers and AST device developers has also reduced tremendously.

 

Old antibiotic compounds would be life-saving drugs

To combat  drug-resistant infections, scientists are scouring chemical compounds that were previously discarded to identify the ones that could be transformed into new antibiotics. In the mid-20th century, many different chemical compounds were examined to determine the ones that had antibacterial properties; however, only a small proportion of compounds was used for drug development.

In modern times, diseases have become highly resistant to existing drugs. At the University of Leeds, these old compounds are being re-examined by biologists and chemists by using advancements in science and technology. These compounds are being tested very precisely to determine if they could be developed into a drug in the near future.

Presently, more than 3,000 antibiotics have been discovered till date. Nevertheless, only a handful of compounds have been prescribed clinically till date. There may be several compounds with untapped potential.

Life-saving drugs may be produced by identifying compounds that have anti-bacterial properties; these compounds might have not been used in clinical practice earlier. With the mutation of bugs, scientists are clueless about tackling them with existing batches of antibiotics.

Potential new drug

According to latest research studies, a compound identified in 1940s was a realistic contender as a new antibiotic drug. Actinorhodins (ACT) constitute a family of compounds with some antibiotic properties; however, these compounds were not developed into life-saving drugs previously.

A promising new drug has been developed to combat bacterial infections.  Antibacterial activity was exhibited by two most important representatives of ESKAPE category of bacteria, which have the ability to ‘escape’ the action of existing drugs.

New drugs should be discovered and developed to tackle antibiotic resistance. Potentially useful drugs were identified from antibiotics, which were already to people.  The group of drugs belonging to ACT family showed weak antibiotic activity, so they could not be evaluated previously.

To discover new drugs, one needs to identify chemical compounds that were shelved out previously. New antibiotics have not been discovered in the past 25 years. Current strategy of considering chemical compounds that were shelved off previously is a nice way of combating the growing strain of drug-resistant bacteria.