Within the human pancreas, scientists stimulated progenitor cells and developed them into beta cells that were responsive to glucose. These findings were published in the journal Cell Reports, which paved the way for developing novel cell therapies, which is an important breakthrough for type 1 diabetic patients. This addresses a major obstacle that blocks the way for discovering a complete cure for type 1 diabetes.
Pancreas contains progenitor cells and has the potential of regenerating islets. This hypothesis has been established since many decades, but it has not been proven conclusively. Scientists identified the exact location of stem cells anatomically. They validated their proliferative ability to transform into beta cells, which were responsive to glucose.
A detailed study of stem cells was conducted in the human pancreas, and the results were used to tap into the cell supply ‘bank’ of beta cells. These events occurred endogenously and were used for regeneration purposes. In the years to come, these stem cells could be used for therapeutic applications of type 1 diabetic patients..
In earlier studies, it was found that the bone morphogenetic protein 7 (BMP-7) could be used for clinical applications and to stimulate cells that resemble progenitors. These cells occur within the non-endocrine sections of the human pancreatic tissue. In previous studies, it was reported that BMP-7 is used to stimulate growth and to induce the transformation of stem cells into functional islets.
In a recent study, researchers further demonstrated that stem cells responding to BMP-7 reside within the network of ducts and glands of the human pancreas. Moreover, the expression of PDX1 and ALK3 is used to characterize these cells of the human pancreas. The protein PDX1 is required for the development of beta cells, whereas ALK3 is a receptor of cell surfaces and is used to regenerate several tissues.
With the help of “molecular fishing” techniques, researchers could selectively extract cells that expressed PDX1 and ALK3. A petri-dish was used to grow the cell culture, and they proliferated due to the expression of BMP-7. These cells were later differentiated into beta cells. The combined results of this study were used to develop regenerative cell therapies for both type 1 and type 2 diabetes patients.
In patients with type 1 diabetes, the cells that produce insulin in the pancreas are attacked and sabotaged by the immune system. Patients had to control their glucose levels in the blood with a daily regimen of insulin therapy. In patients with type 2 diabetes, insulin was produced to some extent but beta cells became dysfunctional over a period of time.
With islet transplantation, some type 1 diabetes patients could live without insulin injections. This is because donor cells were infused into these patients; however, enough cells are not there to treat several patients with type 1 diabetes.
Presently, research studies have primarily focused on synthesizing many pancreatic cells, which can be transplanted from embryonic (hESc), pluripotent (hPSc) and adult stem cells, and porcine (pig) islets. It would be better to regenerate insulin-producing cells in patients, which prevents the need to completely transplant donor tissue and eliminate roadblocks to other immune-related disorders.
Regenerative medicine strategies must be developed to restore insulin production in native pancreas. This would replace the need for pancreas transplantation or other cells that produce insulin. In patients with type 1 diabetes, autoimmunity abrogation must be stopped in order to prevent the destruction of immune system and newly produced insulin cells. For this purpose, efforts were made to converge immune tolerance induction that did not require anti-rejection drugs for a long period of time.