Can Alzheimer’s be treated with aspirin?

Plaques developed in the brain can be eliminated with a low-dose aspirin, which is an effective drug that suppresses the progression of Alzheimer’s disease. The drug aspirin is very effective in protecting the memory of patients. These are the latest findings reported by neurologists at the Rush University Medical Center. The results of this study were published in the Journal of Neuroscience.

Our study is path-breaking and novel in the sense that aspirin is one of the most commonly used medication for various illnesses. More than 1 out of 10 Americans was diagnosed with Alzheimer’s disease, which is a progressive form of dementia. Very few drugs have been approved by the FDA for the treatment of Alzheimer’s-related complications, such as dementia. Presently, only temporary relief is provided by these medications.

Researchers still do not know the exact cause of Alzheimer’s disease; however, researchers know the cause of dementia and memory loss, which is associated with the faulty disposal of amyloid beta. Amyloid beta is the most toxic protein to have been developed in the human brain. Researchers believe that the most important strategy for eliminating the progression of Alzheimer’s illness would be the activation of cellular machinery. Waste can be removed from the human brain with this machinery.

Amyloid plaques are clumps formed by the toxic protein amyloid beta. The connection between nerve cells would be harmed by amyloid plaques. Such a development is one of the major signs of Alzheimer’s illness. There seems to be a link between the reduced risk of developing Alzheimer’s disease and the consumption of aspirin. The most important component of animal cells, the lysosomes, is very useful in clearing cellular debris. In mice, lysosomes could be stimulated with aspirin. Aspirin is the component that decreases amyloid plaque.

The incidence, progression, and development of Alzheimer’s disease could be stopped by elucidating the development of amyloid plaques. To regulate the removal of waste products from the human body, a protein named TFEB. Aspirin was administered orally to mice, which were genetically modified to develop the pathology of Alzheimer’s disease.

To determine the parts of brain most affected by Alzheimer’s disease, we determined the amount of amyloid plaque in these subjects. In mice, the functions of aspirin medications are as follows: i) to augment the expression of TFEB, ii) stimulate the expression of lysosomes, and iii) decrease the pathology of amyloid plaque.

Aspirin is the most widely used medication for pain relief; moreover, it is also used extensively for the treatment of cardiovascular diseases. The findings of these research studies must be validated further. Aspirin could be soon considered as a therapeutic drug for the treatment of Alzheimer’s illness and other diseases related to dementia.

 

 

In Mice with Alzheimer’s, memory loss is reversed with diabetic drug

According to a recently published paper in Brain Research, a diabetic drug could be used to reverse memory loss in mice with Alzheimer’s disease. This study was conducted at Lancaster University in the UK. Professor Christian Holscher was the lead researcher of this study. This is a promising line of treatment for Alzheimer’s disease, a common neurodegenerative disorder. The drug was conventionally used to treat patients with type 2 diabetes.

Memory loss and dementia are the most common signs of Alzheimer’s disease. According to Alzheimer’s Society, more than two million people would suffer from Alzheimer’s disease by 2051. This research study was partially funded by Alzheimer’s Society. It is alarming rate of increase and there has been no new treatment for Alzheimer’s disease in recent times.

Since the past 15 years, physicians have been prescribing the same medications for patients with Alzheimer’s disease. According to Dr Doug Brown at the Alzheimer’s Society, new drugs must be urgently developed to tackle the growing number of patients with Alzheimer’s disease. Patients with Alzheimer’s disease cannot lead normal lives as dementia progresses quickly, limiting their cognitive skills and memory.

Diabetic drug liraglutide was tested on mice with Alzheimer’s disease; however, its efficacy must be further tested on human patients with Alzheimer’s disease. Randomized clinical trial need to be carried out with this objective. “Triple agonist drugs” have also shown promising results on mice with Alzheimer’s disease. Nevertheless, much needs to be done in the area of research and development.

Liraglutide is a “triple receptor drug” that has been tested for the first time. Researchers found that this drug could offer protection against degeneration of brain cells. Growth factors GLP-1, GIP, and Glucagon are combined in the formulation of the diabetic drug liraglutide. Previous studies have reported that growth signaling factors get impaired in the brain of patients with Alzheimer’s disease.

In this research study, scientists used transgenic mice APP/PSI. In these mice, they observed the expression of mutated genes, which cause Alzheimer’s disease. The same genes also undergo mutation in humans with Alzheimer’s disease. This form of Alzheimer’s is inherited through genetic mutation.

Researchers found that even in the advanced stage of neurodegeneration, memory loss could be significantly reversed in transgenic mice. By administering liraglutide drug to these aged mice, they could not improve memory but also cognitive ability. By performing maze test, they found that growth factors were enhanced in the brain of aged transgenic mice.

These growth factors in the brain would ensure normally functioning of nerve cells, preventing them from undergoing degeneration. Moreover, the drug decreased the formation of amyloid plaques in the brain of patients with Alzheimer’s disease. Furthermore, oxidative stress and chronic inflammation were reduced with the administration of this drug. Finally, the rate of nerve cell loss decreased following the action of this drug.

According to Professor Holscher, clinical trials have been successfully conducted with an older version of this drug. The promising results suggested that this drug was suitable for treating patients with Alzheimer’s disease. Although this drug was originally developed to manage type 2 diabetes, many studies have reported about its neuro-protective effects.

Our study is unique in the fact that a novel triple drug shows promising results when used as a line of treatment for Alzheimer’s disease. However, further clinical trials must be conducted in a dose-dependent manner on humans, and its efficacy must be compared with existing drugs to know whether if the novel drug is superior to existing ones.

The risk of Alzheimer’s disease is high in patients with type 2 diabetes. Quite often, Alzheimer’s disease develops with the progression of type 2 diabetes. Owing to impaired insulin levels, cerebral degeneration occurs in patients with type 2 diabetes. This leads to the development of Alzheimer’s disease.

In the brain of patients with Alzheimer’s disease, scientists have found that there is no sensitivity to insulin. They believe that neurodegenerative disorders occur due to insulin desensistization in the brain. This is because insulin exhibits neuroprotective effects as it is a growth factor in human brain.