In Mice with Alzheimer’s, memory loss is reversed with diabetic drug

According to a recently published paper in Brain Research, a diabetic drug could be used to reverse memory loss in mice with Alzheimer’s disease. This study was conducted at Lancaster University in the UK. Professor Christian Holscher was the lead researcher of this study. This is a promising line of treatment for Alzheimer’s disease, a common neurodegenerative disorder. The drug was conventionally used to treat patients with type 2 diabetes.

Memory loss and dementia are the most common signs of Alzheimer’s disease. According to Alzheimer’s Society, more than two million people would suffer from Alzheimer’s disease by 2051. This research study was partially funded by Alzheimer’s Society. It is alarming rate of increase and there has been no new treatment for Alzheimer’s disease in recent times.

Since the past 15 years, physicians have been prescribing the same medications for patients with Alzheimer’s disease. According to Dr Doug Brown at the Alzheimer’s Society, new drugs must be urgently developed to tackle the growing number of patients with Alzheimer’s disease. Patients with Alzheimer’s disease cannot lead normal lives as dementia progresses quickly, limiting their cognitive skills and memory.

Diabetic drug liraglutide was tested on mice with Alzheimer’s disease; however, its efficacy must be further tested on human patients with Alzheimer’s disease. Randomized clinical trial need to be carried out with this objective. “Triple agonist drugs” have also shown promising results on mice with Alzheimer’s disease. Nevertheless, much needs to be done in the area of research and development.

Liraglutide is a “triple receptor drug” that has been tested for the first time. Researchers found that this drug could offer protection against degeneration of brain cells. Growth factors GLP-1, GIP, and Glucagon are combined in the formulation of the diabetic drug liraglutide. Previous studies have reported that growth signaling factors get impaired in the brain of patients with Alzheimer’s disease.

In this research study, scientists used transgenic mice APP/PSI. In these mice, they observed the expression of mutated genes, which cause Alzheimer’s disease. The same genes also undergo mutation in humans with Alzheimer’s disease. This form of Alzheimer’s is inherited through genetic mutation.

Researchers found that even in the advanced stage of neurodegeneration, memory loss could be significantly reversed in transgenic mice. By administering liraglutide drug to these aged mice, they could not improve memory but also cognitive ability. By performing maze test, they found that growth factors were enhanced in the brain of aged transgenic mice.

These growth factors in the brain would ensure normally functioning of nerve cells, preventing them from undergoing degeneration. Moreover, the drug decreased the formation of amyloid plaques in the brain of patients with Alzheimer’s disease. Furthermore, oxidative stress and chronic inflammation were reduced with the administration of this drug. Finally, the rate of nerve cell loss decreased following the action of this drug.

According to Professor Holscher, clinical trials have been successfully conducted with an older version of this drug. The promising results suggested that this drug was suitable for treating patients with Alzheimer’s disease. Although this drug was originally developed to manage type 2 diabetes, many studies have reported about its neuro-protective effects.

Our study is unique in the fact that a novel triple drug shows promising results when used as a line of treatment for Alzheimer’s disease. However, further clinical trials must be conducted in a dose-dependent manner on humans, and its efficacy must be compared with existing drugs to know whether if the novel drug is superior to existing ones.

The risk of Alzheimer’s disease is high in patients with type 2 diabetes. Quite often, Alzheimer’s disease develops with the progression of type 2 diabetes. Owing to impaired insulin levels, cerebral degeneration occurs in patients with type 2 diabetes. This leads to the development of Alzheimer’s disease.

In the brain of patients with Alzheimer’s disease, scientists have found that there is no sensitivity to insulin. They believe that neurodegenerative disorders occur due to insulin desensistization in the brain. This is because insulin exhibits neuroprotective effects as it is a growth factor in human brain.

 

Leave a Reply

Your email address will not be published. Required fields are marked *