A promising approach for treating pancreatic cancer

 

A new study has reported about a promising approach for treating pancreatic cancer. The study was conducted on mice by researchers of the Queen Mary University of London. They identified the cells that caused metastasis of pancreatic cancer, and they also explained how the weakness of these targeted cells could be explored to mitigate pancreatic cancer with existing drugs.

These researchers have reported that certain types of cells known as amoeboid cells were present in most patients with pancreatic cancer. The activity of these fast-moving cells was aggressive and invasive, thereby weakening the immune system of patients.

These amoeboid cells are also reportedly to have been found in patients with other types of cancer, such as liver cancer, breast cancer, and skin cancer. The survival rate of such patients is poor. However, this is the first study to report these cells in pancreatic cancer patients.

Researchers also found high levels of expression of a molecule named CD73 in patients with pancreatic cancer. This molecule is believed to be produced by amoeboid cells and it drives the metastasis of cancer, thereby weakening the immune system. The activity of this CD73 molecule had to be blocked. Thus, tumour tissues would not have spread to the liver.

The amoeboid cells were reportedly detected in late as well as early-stage patients with pancreatic cancer. This implies that the activity of CD73 molecule should be blocked at an early stage of the disease and the aggressive nature of amoeboid cells can be curtailed. Thus, the damage caused to the body can be reduced, thereby indicating a new hope for patients with pancreatic cancer.

Currently, the rate of survival and patient outcomes of pancreatic cancer are poor. Presently, every year more than 10000 people are diagnosed with pancreatic cancer in the UK. The conventional mode of treatment enables just 7% of patients to survive for five years after detection. Presently, chemotherapy, radiotherapy, and surgery are not working well for most patients.  This novel mode of treatment has given promising results in mice and human clinical trials need to be conducted soon.

 

 

 

 

 

Researchers at Laussane University hospital discover a highly effective antibody against SARS-CoV-2

 

A newly discovered antibody was isolated from the lymphocytes of patients with COVID-19. These patients were enrolled in a research study conducted by Laussane University Hospital. This antibody has been found to be very powerful in fighting against SARS-CoV-2. After performing structural analysis of the antibody, the researchers found that it does not associate itself with mutations of the spiked protein.

The cells expressing the ACE2 receptor are prevented from binding to the spike protein by the newly discovered antibody. The COVID-19 virus uses the spike protein to enter the body and infect the cells of the lungs. This implies that the antibody fights against the replication of the virus, helping immune cells in eliminating SARS-CoV-2 from the human body.

In vivo tests confirmed the antiviral properties of the antibody, which was administered into some specimens that had contracted a high infection of the virus. This antibody offers a lasting effect of protection against coronavirus infection. In general, a conventional antibody can provide protection against infection for about 3-4 weeks.

But this antibody offers protection for about 4-6 months, making it an attractive treatment that prevents infection in unvaccinated people or in vaccinated people with compromised immunity. These patients, cancer patients, or those who have undergone organ transplantation in these times should receive at least two to three doses of antibody injections in a year. The clinical trial of the drug containing this new antibody would begin in the latter half of the year 2022.

In Europe, a lot of efforts have been made in drug discovery, especially in times of COVID-19 pandemic. This newly discovered antibody can be very effective in fighting COVID-19 infection. This new form of treatment should be made available in the form of a drug, enhancing protection of patients with weak immune systems. However, it may be noted that the antibody cannot be replacement to COVID-19 vaccines, which are still most effective in controlling the pandemic.

 

 

In severe cases of COVID-19, autoantibodies cause havoc and even death

 

It is a well-known fact that the pandemic of COVID-19 can be controlled only by boosting the production of antibodies in the immune system of patients. However, a recent article in Nature magazine reports otherwise. According to scientists at Yale University, the immune system of patients with severe COVID-19 is impaired significantly and boosting the production of antibodies cannot really control the illness.

Diseases like lupus and rheumatoid arthritis are autoimmune disorders, which are treated by boosting the production of autoantibodies. These antibodies interact and target damaged tissues associated with autoimmune diseases. In patients afflicted with COVID-19, autoantibodies target multiple organ systems that are otherwise healthy. This means that healthy tissues in the brain, liver, and gastrointestinal tract are attacked by autoantibodies. Moreover, they also target blood vessels and platelets in the bloodstream. This implies that the severity of COVID-19 is directly proportional to the number of detected autoantibodies.

Scientists at Yale University also found out that these autoantibodies attack many proteins in the immune system, that is, proteins that otherwise effectively fight infections are damaged by autoantibodies. Therefore, the situation is like a double-edged sword in patients with severe COVID-19 infection. In general, antibodies are effective in combating infection, but when COVID-19 infection is severe, patients develop autoantibodies. These autoantibodies attack multiple types of cells and tissues.

In most cases of COVID-19, the infection became severe and led to the production of autoantibodies, which are antibodies that caused extensive damage. However, it must be noted that in most severe cases of COVID-19, patients already had a pre-existing disease that caused the production of autoantibodies. The observation was done after testing mice with pre-existing autoimmune disorders and who had developed COVID-19 infection. Such mice had a large concentration of autoantibodies. Such kind of sickly mice were more likely to succumb to COVID-19 infection as there is no effective cure till date.

Autoantibodies are also called rogue antibodies and are believed to be existing for a long period of time in patients with pre-existing autoimmune disorders. When such patients contracted COVID-19 infection, they developed severe form of the disease that could not be tackled with existing medications and injections. The medical symptoms of COVID-19 became severe and long lasting in these patients. In other words, the virus became a legacy in the bodies of these patients. Therefore, all patients with autoimmune disorder should immediately be vaccinated to prevent more cases of severe COVID-19.

In patients with autoimmune disorder, autoantibodies are produced even at a mild stage of COVID-19 infection. The study was conducted by an esteemed team of scientists and physicians working at Yale University. In their clinical practice, they made concerted efforts to tackle COVID-19 infection: they screened blood samples of 194 patients with COVID-19 infection; the extent of severity was different in different patients. Nevertheless, autoantibodies were detected in all the blood samples of these patients.

Yale scientists developed a novel technology to detect the extent of damage caused by autoantibodies to proteins of the immune system. The technology was named Rapid Extracellular Antigen Profiling (REAP), and it explored the interaction of autoantibodies with approximately 3,000 proteins of the human body.

The scientists at Yale believe that the study’s findings may be used to develop novel strategies to combat or even prevent the damage caused by autoantibodies in patients with severe infection of COVID-19. Moreover, REAP technology is not just restricted to measuring the response of autoantibodies to COVID-19 infection.

The technology can be used to determine the damage caused by autoantibodies in patients with many types of autoimmune disorders and chronic diseases. These scientists are now exploring whether the technology can be used to determine the damage caused by autoantibodies in cancer patients and in patients with neurological disorders.

 

 

 

Promising pilot trial for tumor vaccine

The University of Pennsylvania has conducted a promising clinical trial to devise a new type of vaccine for cancer. Although the clinical trial was of an initial stage, promising results have been meted out and researchers are hopeful of a breakthrough discovery.

The clinical trial was a joint collaboration between researchers of following medical schools, which are affiliated to the University of Pennsylvania: the Perelman School of Medicine and the Abramson Cancer Center. The vaccine is truly innovative in the sense that it corporates the immune cells of patients; the immune cells are directly exposed to the tumor cells of patients.

This experiment was carried out in a laboratory under simulated conditions. Following treatment, the immune cells are then injected into the patient to elicit a better immune response.This experimental clinical trial was performed on patients diagnosed with ovarian cancer at an advanced stage.

This was a pilot trial whose sole purpose was to determine the feasibility and safety of novel vaccine; however, the results were promising enough to ensure that is very effective in nature. Anti-tumor T-cell responses were elicited in more than half of the patients that participated in this clinical trial.

Patients that responded to this treatment had higher life expectancy despite tumor progression unlike patients who just did not elicit any response. In fact, one patient became “disease free” for five years after receiving being treated with this vaccine for two years. The promising results of this clinical trial have been published currently in the journal Science Translation Medicine.

The lead author of this study was Dr. Janos L. Tanyi, MD, who works as an assistant professor of obstetrics and gynecology at Penn Medicine. The researchers concluded that the novel vaccine was safe for clinical treatment of patients. This vaccine elicited a broad anti-tumor immunity; however, they have strongly recommended more clinical trials on a larger scale.

The other researchers who worked with the lead author at the Perelman School of Medicine at the University of Pennsylvania are as follows: Lana Kandalaft, PharmD, PhD, George Coukos, MD, PhD, and Alexandre Harari, PhD. The conventional treatment offered by cancer vaccines can be summarized as follows: A cell-surface receptor is a specific molecule that is mostly attacked by most cancer vaccines till date.

This molecule is generally found on cancerous cells in any kind of tumor. However, the team headed by Lausanne-Penn devised a far more aggressive approach. They developed a personalized vaccine that took into considered every individual cancer patients’ condition. For this purpose, they comprehensively analyzed the tumor system of each cancer patient.

The set of mutations are unique to each tumor, presenting a unique pathology of the impaired immune system. With this information, they developed a whole-tumor vaccine that elicited immune response and combated not just a single target in the tumor, but about hundreds or thousands. This is a truly innovative strategy that outshines the efficacy of conventional vaccines.

The basic objective of this clinical trial was to elicit a strong immune response that targets tumors comprehensively. They were successful in eliciting an immune response that hits all kinds of markers, including the markers that are unique to a particular tumor.

The formidable defenses of tumors were overcome by harnessing the T-cell immunity with the vaccine. To prepare a personalized vaccine for each patient, the researchers sifted through the mononuclear cells of peripheral blood, which was obtained from each patient.

They identified precursor cells that were suitable enough for use in this clinical experiment. These cells were grown into a culture in a laboratory under carefully controlled conditions. Thus, they produced a large number of dendritic cells. A T-cell immune response can be effectively elicited with the use of dendritic cells.

Infectious pathogens are engulfed by these T-cells; moreover, these T-cells also engulf tumor cells and anything that is considered “foreign”. Nevertheless, a specific response is elicited by the patients’ immune system when T-cells and other components of the immune system are again exposed to pieces of invader cells.

The patients’ tumor cells were obtained and a special extract was prepared from these tumor cells. Then, the extract of tumor cells was exposed to dendritic cells; the dendritic cells were activated by irradiating them with interferon gamma. Finally, the patients’ lymph nodes were injected with these activated dendritic cells and a T-cell response was generated.

The team of researchers successfully carried out this strategy on 25 patients in total. Every three weeks, each patient was administered a dose of dendritic cells; it is important to note that these dendritic cells were treated with tumor cells by a process described above.

The exposure of dendritic cells at periodic intervals was carried out for six months. A huge increase in the number of T-cells was reported in more than half of the patients included in this trial. What’s more fascinating is the fact that generated T-cells were specifically reactive to tumor cells. In other words, the personalized vaccine developed for combating cancer was hugely successful.

The patients that responded to this treatment showed 100 percent survival for a period of two years. The patients that failed to respond to this treatment showed an overall survival rate of just 25 percent over a two-year period.

In this experiment, researchers had a included a stage 4 ovarian cancer patient who was 46 years old. The prognosis of this patient is generally very poor with conventional treatment, which includes five courses of chemotherapy. Interestingly, this patient remained disease-free for five long years after receiving 28 doses of the personalized vaccine over a two year period.

In conclusion, the researchers hope that the efficacy of this personalized vaccine would be doubled if it is combined with chemotherapeutic drugs that strive to suppress anti-immune responses of the tumor.