At Friedrich Schiller University in Germany, a group of scientists have successfully devised an efficient method to treat lethal airway infections. They found that nanoparticles can efficiently transport antibiotics to the target destination. Presently, patients are asked to inhale drugs for treating airway infections. Thus, the passage of these drugs from the body to the pathogens causing lung infections is complicated. In fact, many drugs do not even reach the target destination let alone combating the pathogens causing airway infections.
Antibiotics need to be of a miniscule size in order to penetrate the deeper airways else they naturally bounce back and have no effect on the area infected. Moreover, antibiotics have to move across the thick layer of mucus that is formed due to airway infection. Thereafter, they have to penetrate the bacterial biofilm before reaching the infected airway passage.
Nanoparticles: a vehicle for antibiotics
To overcome the various obstacles encountered by inhaled antibiotics, these researchers developed a novel experiment. Antibiotics like Tobramycin were encapsulated in a polyester polymer. Then, they created a simulated lung situation in the laboratory and tested a nanoparticle that was specifically created for this purpose.
The movement of nanoparticle was tracked both in a static and dynamic positions within the simulated flow. In other words, these researchers developed an innovative simulation system, which exactly resembled a lung chronically infected with cystic fibrosis.
They found that nanoparticles can easily travel through the spongy network of mucus and finally reach the deeper airways to attack the pathogens. They did not encounter any difficulties in attacking the pathogens causing lung infection. Researchers applied an additional coating of polyethylene glycol to make the nanoparticle drug delivery system completely invisible to immune system.
Researchers declared that nanomaterial used in this study was biodegradable, non-toxic, and not toxic to humans. Nevertheless, researchers were clueless about how nanoparticles could fight pathogenic bacteria with so much efficiency. However, they are hopeful of making a breakthrough soon in this regard.
Researchers have presented two possibilities: i) significantly larger amounts of antibiotics are administered to the center of infection using nanoparticles as delivery carrier and ii) nanoparticle destroys the defense mechanism developed by the bacteria against the antibiotic.
This implies that these researchers have made a path-breaking discovery, which can be immensely useful in fighting lethal lung infections. Researchers have been able to tackle drug resistance of pathogenic bacteria, which cause lethal lung infections.
It is important to note that in the lower layers of the biofilm in airways, bacteria transform into persistent pathogens, which are dormant and hardly respond to any conventional drug therapies. Thus, conventional antibiotics are only able to destroy self-dividing bacteria. Using nanoparticles, antibiotics are transported into the inner layer of biofilms to combat these dormant, persistent bacteria.
This group of researchers developed nanoparticles specifically for inhalation. Conventional nanoparticles are 200 nm in size, which is too small to enter into the deeper passage of airways. In humans, respiratory system normally filters out particles which are too large and too small. Particles of the size of 1 to 5 micrometers are only allowed to enter through airways of humans.
These researchers have pointed out that “coated nanoparticles” can effectively improve the therapeutic efficacy of antibiotics against bacterial biofilms. This group of researchers have found a truly innovative method to tackle antibiotic resistance of pathogenic bacteria which cause lethal respiratory infections. This treatment modality was particularly useful in treating muscoviscidosis patients.
The life expectancy of such patients can be improved manifold with this path-breaking discovery. The impact of antibiotics against the bacterial biofilm certainly improved when they were delivered in “coated nanoparticles.” This discovery seems to have brought cheers to many pulmonologists who treat such patients on a daily basis.