Pfizer-BioNTech COVID-19 vaccine prevents 110,000 deaths in the US

The Pfizer-BioNTech vaccine has a profound impact on the health of American citizens, ever since it was introduced on a commercial scale this year in the US. This finding has been published in the latest report of the esteemed Journal of Medical Economics.

The vaccine was introduced in the year 2021 in the US, and it became the most widely used vaccine against COVID-19 in the US. The vaccine has been successful in preventing 8.7 million cases of coronavirus. In fact, it was so effective that it prevented 690,000 cases of hospitalization and even about 110,000 deaths in the US.

The healthcare industry has been able to save more than 30 billion dollars due to this vaccine. Moreover, it has also prevented $ 40 billion in what could have been lost productivity of patients and people prone to developing coronavirus.

Pfizer-BioNTech was the first COVID-19 vaccine to have been made commercially in the US. In fact, almost six out of ten American citizens received this vaccine according to the Center for Disease Control, which is a leading public health agency in the US.

The market research study was conducted by authors who received funding from Pfizer. The authors were either employees or consultants of Pfizer. They used a real-world model to test the clinical trial data and estimate the number of cases with symptoms of COVID-19.

They also estimated the number of hospitalizations and deaths that could have occurred in the year 2021 if the vaccine had not been provided to these subjects. Moreover, they estimated the impact of these cases on the existing healthcare system and economy in general.

In the clinical trial model, the authors fed the following data: the number of people vaccinated, the efficacy of the vaccine according to different age groups, the probability of developing COVID-19, the symptoms developed, and the chances of being hospitalized.

The long-term effects of COVID-19 were also considered in the number of working days lost by the patient. The infection was classified as the leading cause of premature deaths, causing an economic burden on the country.

This research study has some limitations, which could have led to an underestimation of figures. The authors did not take into account the potential the vaccine had in reducing the transmission of COVID-19.

The severity of the cases was also not considered. Moreover, the authors did not measure the overall impact that long-standing COVID-19 cases had on the economy.  The research model did not take into account the omicron variant of the COVID-19 as it emerged much later.

 

 

 

 

Promising pilot trial for tumor vaccine

The University of Pennsylvania has conducted a promising clinical trial to devise a new type of vaccine for cancer. Although the clinical trial was of an initial stage, promising results have been meted out and researchers are hopeful of a breakthrough discovery.

The clinical trial was a joint collaboration between researchers of following medical schools, which are affiliated to the University of Pennsylvania: the Perelman School of Medicine and the Abramson Cancer Center. The vaccine is truly innovative in the sense that it corporates the immune cells of patients; the immune cells are directly exposed to the tumor cells of patients.

This experiment was carried out in a laboratory under simulated conditions. Following treatment, the immune cells are then injected into the patient to elicit a better immune response.This experimental clinical trial was performed on patients diagnosed with ovarian cancer at an advanced stage.

This was a pilot trial whose sole purpose was to determine the feasibility and safety of novel vaccine; however, the results were promising enough to ensure that is very effective in nature. Anti-tumor T-cell responses were elicited in more than half of the patients that participated in this clinical trial.

Patients that responded to this treatment had higher life expectancy despite tumor progression unlike patients who just did not elicit any response. In fact, one patient became “disease free” for five years after receiving being treated with this vaccine for two years. The promising results of this clinical trial have been published currently in the journal Science Translation Medicine.

The lead author of this study was Dr. Janos L. Tanyi, MD, who works as an assistant professor of obstetrics and gynecology at Penn Medicine. The researchers concluded that the novel vaccine was safe for clinical treatment of patients. This vaccine elicited a broad anti-tumor immunity; however, they have strongly recommended more clinical trials on a larger scale.

The other researchers who worked with the lead author at the Perelman School of Medicine at the University of Pennsylvania are as follows: Lana Kandalaft, PharmD, PhD, George Coukos, MD, PhD, and Alexandre Harari, PhD. The conventional treatment offered by cancer vaccines can be summarized as follows: A cell-surface receptor is a specific molecule that is mostly attacked by most cancer vaccines till date.

This molecule is generally found on cancerous cells in any kind of tumor. However, the team headed by Lausanne-Penn devised a far more aggressive approach. They developed a personalized vaccine that took into considered every individual cancer patients’ condition. For this purpose, they comprehensively analyzed the tumor system of each cancer patient.

The set of mutations are unique to each tumor, presenting a unique pathology of the impaired immune system. With this information, they developed a whole-tumor vaccine that elicited immune response and combated not just a single target in the tumor, but about hundreds or thousands. This is a truly innovative strategy that outshines the efficacy of conventional vaccines.

The basic objective of this clinical trial was to elicit a strong immune response that targets tumors comprehensively. They were successful in eliciting an immune response that hits all kinds of markers, including the markers that are unique to a particular tumor.

The formidable defenses of tumors were overcome by harnessing the T-cell immunity with the vaccine. To prepare a personalized vaccine for each patient, the researchers sifted through the mononuclear cells of peripheral blood, which was obtained from each patient.

They identified precursor cells that were suitable enough for use in this clinical experiment. These cells were grown into a culture in a laboratory under carefully controlled conditions. Thus, they produced a large number of dendritic cells. A T-cell immune response can be effectively elicited with the use of dendritic cells.

Infectious pathogens are engulfed by these T-cells; moreover, these T-cells also engulf tumor cells and anything that is considered “foreign”. Nevertheless, a specific response is elicited by the patients’ immune system when T-cells and other components of the immune system are again exposed to pieces of invader cells.

The patients’ tumor cells were obtained and a special extract was prepared from these tumor cells. Then, the extract of tumor cells was exposed to dendritic cells; the dendritic cells were activated by irradiating them with interferon gamma. Finally, the patients’ lymph nodes were injected with these activated dendritic cells and a T-cell response was generated.

The team of researchers successfully carried out this strategy on 25 patients in total. Every three weeks, each patient was administered a dose of dendritic cells; it is important to note that these dendritic cells were treated with tumor cells by a process described above.

The exposure of dendritic cells at periodic intervals was carried out for six months. A huge increase in the number of T-cells was reported in more than half of the patients included in this trial. What’s more fascinating is the fact that generated T-cells were specifically reactive to tumor cells. In other words, the personalized vaccine developed for combating cancer was hugely successful.

The patients that responded to this treatment showed 100 percent survival for a period of two years. The patients that failed to respond to this treatment showed an overall survival rate of just 25 percent over a two-year period.

In this experiment, researchers had a included a stage 4 ovarian cancer patient who was 46 years old. The prognosis of this patient is generally very poor with conventional treatment, which includes five courses of chemotherapy. Interestingly, this patient remained disease-free for five long years after receiving 28 doses of the personalized vaccine over a two year period.

In conclusion, the researchers hope that the efficacy of this personalized vaccine would be doubled if it is combined with chemotherapeutic drugs that strive to suppress anti-immune responses of the tumor.

 

 

The onset of type 1 diabetes may be prevented with existing drug

According to researchers at the University of Colorado, a drug used to treat high blood pressure may also be used as a preventive medication for type 1 diabetes. This study was published in the Journal of Clinical Investigation.  This seems to be an important breakthrough to combat type 1 diabetes. In the clinical investigating laboratory, this discovery was path-breaking on mice and humans with the aid of supercomputers.

In pregnant woman and children, the drug methyldopa was used to treat high blood pressure for the past 50 years. This drug was included in the list of essential drugs at the World Health Organization (WHO).

Many drugs may be used to treat a single condition; however, the path-breaking discovery was completely unrelated to current use of medication. The risk of developing type 1 diabetes increases manifold with the molecule D8, with about 60 percent people with type 1 diabetes being diagnosed with this molecule. Scientists believe that the onset of heart disease could be prevented if the molecule D8 can be blocked specifically.

Every allopathic medication has side-effects. Excessive consumption of acetaminophen can cause damage to liver. Every small molecule approved by FDA was taken into consideration and analyzed with a supercomputer to identify whether the linkage between HLA and DQ8 existed. Each drug exhibited more than thousand orientations. We identified the ones that were associated with DQ8 molecule.

Thousands of drugs were analyzed with a supercomputer. The drug methyldopa was found to block DQ8. Nevertheless, the immune function of remaining cells was not compromised in this case like the way other immunosuppressant drugs. These research studies were conducted over a period of 10 years, but the efficacy was proved in mice and in 20 patients who were diagnosed with type 1 diabetes.

These patients participated in the clinical trial that was conducted at the School of Medicine, University of Colorado. With this discovery, prediction of type 1 diabetes is possible. The ultimate aim of this study was either to delay or to prevent the onset of type 1 diabetes among the people who were at risk of developing diabetes.

The drug used to prevent type 1 diabetes can be administered orally, at least three times a day. The strategy of blocking the expression of a specific molecule can also be used to combat other diseases.This study showed significant improvement in people suffering from diabetes and other autoimmune diseases.

The same approach can also be used to treat other autoimmune disorders, such as rheumatoid arthritis, multiple sclerosis, systemic lupus, etc. To verify the implications of this disease, a larger clinical trial would be conducted at the National Institutes of Health in spring season. A very significant development would be the prevention of type 1 diabetes in people at risk of developing the illness.

 

Guidelines to include feedback of patients in clinical trials

 

The impact of treatment on participants and their quality of life must be assessed more comprehensively, so it is imperative to make changes in international guidelines. The safety of participating patients and integrity of data collected depends on the protocols used for describing a clinical trial: objectives, design, methodology, statistical consideration, and organization.

Current protocols do not emphasize much on patient-reported outcomes (PROs). Most researchers have recommended that feedback must be collected from patients on how clinical trial affects overall quality of life.

According to a noted medical researcher at the University of Birmingham, feedback received from patients participating in a clinical trial can hold valuable information for following purposes: pharmaceutical labeling claims, clinical guidelines, health policy, shared-decision making.

Most clinical trials currently do not include information on quality of life and symptom data. This data must be collected to provide patient-centered care and to develop specific protocol guidelines.

Recommended changes to current protocols of clinical trials were published in the Journal of American Medical Association. This information was a joint-collaboration across universities of Toronto, Sydney, and Birmingham. It is important to understand the impact clinical trials have on cancer patients.

With this information, patients can then decide which line of treatment is most suitable for them. The side-effects of cancer treatments are often long-lasting and most clinical trials do not include this line of information. A cancer patient receiving treatment may live for years but their quality of life is severely impacted with these side-effects.

Patient-related outcomes (PROs) are classified as primary or secondary in clinical trial protocols; these outcomes need to be included in the current checklist guidelines of clinical trial protocol.

The PRO specific issues are as follows: trial rationale, eligibility criteria, objective, intervention, assessment time-points, proxy completion, and strategies for minimizing missing data.

The guidance prescribed in PROs is not prescriptive, but it provides a pathway for implementing a careful planning of PRO components of trials. Thus, PRO trial design improves, and the rationale for assessing PRO is improved. Thus, high quality analysis is ensured and reported, thereby improving the evidence base of PRO on a global scale.

Clinicians can use PROs effectively to make right decisions, thereby improving the line of recovery and treatment. This is a more effective strategy for comprehensively reporting personal experiences of patients with serious illness.

More guidelines must be consistently presented to help both patients and clinicians and to improve the outcome of prognosis. By improving the reporting of PRO data, the outcomes of patients with chronic diseases can be improved tremendously.